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LARGE-SAMPLE THEORY FOR STANDARDIZED TIME SERIES: AN OVERVIEW

Peter W. Glynn and Donald L. Iglehart

ABSTRACT

There are two basic approaches to constructing confidence intervals

for steady-state parameters from a single simulation run. The first is to

consistently estimate the variance constant in the relevant central limit

theorem. This is the approach used in the regenerative, spectral, and

autoregressive methods. The second approach (standardized time series,

STS) due to SCHRUBEN [10] is to "cancel out" the variance constant. This

second approach contains the batch means method as a special case. Our

goal in this paper is to discuss the large-sample properties of the

confidence intervals generated by the STS method. In particular, the

asymptotic (as run size becomes large) expected value and varidnce of the

length of these confidence intervals is studied and shown to be inferior to

the behavior manifested by intervals constructed using the first approach.

-Key Words: batch means.

confidence intervals

functional central limit theorem.

weak convergence of probability measures

simulation output analysis

standardized time series

steady-state simulation.
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1. INTRODUCTION

Standardized time series has attracted considerable attention in the

simulation community, since its introduction by SCURUBEN [101. Although

the method has been exploited for the purpose of detecting initialization

bias (see [91), our intent here is to focus solely on the application of

standardized time series to generation of confidence intervals for

steady-state simulations. We shall describe, for these confidence

intervals, certain large-sample results first obtained in GLYNN and

IGLEHART [5]. We start, in Section 2, by outlining the steady-state

confidence interval problem. In Section 3, the method of standardized time

series is described, while Section 4 is devoted to the large-sample theory

for the confidence intervals generated. Section 5 concludes with a

description of future research problems associated with the method of

standardized time series.

2. THE STEADY-STAE COUFIMICE IMTREVAL PROBLEI

Let = {Y(t) : t > 01 be a real-valued stochastic process

representing the output of a simulation. (To incorporate stochastic

sequences (Yn : n > 01 into our framework, set Y(t) - Yjtj, where (t]

is the greatest integer less than or equal to t.) Assume that Y

possesses a steady-state, in the sense that

r(tt Y(s)ds -* r (2.1)
0

as t + ® (- denotes weak convergence), where r is a finite

deterministic constant.
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The steady-state estimation problem of simulation has basically two

parts:

i) construct a consistent estimator for the steady-state parameter r

ii) assess the variability of the estimator constructed in i).

Given (2.1), the solution to part i) is trivial: namely, given an

observation of the process Y over the interval [O,tJ, use r(t) (or

some asymptotically equivalent variant thereof) as our point estimator

for r. This method for estimating r is known as a single-

replicate method. Although multiple replicate procedures for estimating r

are also available (see GLYNN [4] for the relevant large-sample theory), we

shall restrict our attention here to single-replicate methods.

Part ii) is the crux of the steady-state estimation problem; it has

attracted a great deal of attention in the simulation literature over the

last ten years. The traditional variability assessment technique, which

has been widely adopted in the simulation community, is to construct

confidence intervals for the point estimator. It should be emphasized,

however, that there are other possible methods available for assessing

point estimator variability. For example, one could use an estimate of the

mean square error (MSE) of the point estimator for the same purpose.

In any case, confidence interval generation has generally been regarded as

the most reasonable means for assessing point estimator variability.

Adopting this viewpoint, most published analyses have required assuming a

strengthened version of (2.1), namely existence of a finite positive

constant a such that

t /2(r(t) - r) -= a N(O,1) (2.2)

2



as t * -. where N(0,1) is a normal random variable (RV) with mean zero

and unit variance.

To use the central limit theorem (CLT) (2.2) directly to generate

confidence intervals, one needs a process {s(t) : t > 0), with the

following properties:

i) s(t) may be constructed from the process Y observed over

the interval [O,t]

ii) s(t) -+ a as t . (2.3)

Property (2.3) ii) says that s(t) consistently estimates the parameter

a. Given such a process {s(t) : t > 0), the interval

[r(t) - z 5s(t), r(t) + z t_ !(O]
Vt Vt

can easily be shown to be an asymptotic 100(1-6)Z confidence interval for

r, provided that z. is chosen as a solution to P{N(0,1) < z) - 1-6/2.

Thus, under the hypothesis (2.2), the confidence interval generation

problem is reduced to construction of consistent estimators for a. We

will call confidence interval procedures which follow this line of

attack consistent estimation procedures.

Note that a has an important statistical interpretation. If the

process {t(r(t)-r)2 : t > 0) is uniformly integrable (this should be

viewed as a mathematical regularity condition which, from a practical

viewpoint, is just slightly stronger than the assertion (2.2)), then we can

pass expectations through the limit theorem obtained by squaring both sides

of (2.2), thereby yielding

3



2 2
t E(r(t)-r) a ,

as t w. In other words, the MSE of the point estimator r(t) is

asymptotic to a 2/t. Thus, a consistent estimation procedure not only

produces a confidence interval for r, but also an estimate for the MSE of

the point estimator r(t), namely s 2(t/t.

We view the following well-known techniques as consistent estimation

procedures:

i) the regenerative method

ii) spectral procedures (with bandwidth going to zero as sample size

t +)

iii) autoregressive methods (with model order going to infinity as sample

size t +)

v) batch means (with both the batch size and number of batches going to

infinity as sample size t +-).

Mathematical theory verifying consistency of the regenerative estimator is

available (see, for example, IGLEHART 181); we are not, however, aware of

such consistency results for the other three techniques mentioned above, in

the context of the non-stationary processes which arise in simulation.

A totally different approach to the confidence interval generation

problem is, however, available. A glance at the limit theorem (2.2)

indicates that a acts, in some sense, as a scaling parameter. This

suggests that one can eliminate a entirely from the limit theorem (2.2)

by passing to a "dimensionless" version of the result: this is the basic

idea behind standardized time series.

4
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More specifically, suppose that one can find a non-vanishing process

{Z(t) : t > 0) such that

(t12 (r(t)-r), Z(t)) -+ (aN(0,1), aZ) (2.4)

as t + -; it follows, from the continuous mapping theorem (see p. 31 of

BILLINGSLEY [I1), that

t1/2(r(t)-r)/Z(t) -0 N(0,1)/Z (2.5)

as t o*

At first glance, it appears that (2.5) should be enough to construct a

confidence interval for r. However, it is clear that one possible choice

for {Z(t) : t > 0) is Z(t) E a. While this is, of course, a

mathematically reasonable possibility, it cannot be implemented from a

practical viewpoint since Z(t) depends on the unknown parameter a.

One might also attempt to use processes {Z(t) : t > 0), in which

Z(t) - Z(t,r) is a function of the parameter r. Clearly, then, Z(t,r)

must have a very special dependence on r, in order that the limit theorem

(2.4) may be "unfolded" to reveal a confidence interval for r of the

form:

[r(t) - L(t) r(t) + U(t)] (2.6)Jr~) 1/2, _71-T 2

when L(t), U(t) do not depend on r (or any other unknown parameters).

To the best of our knowledge, the only confidence interval of the form

(2.6), in which the scaling process Z(t) depends explicitly on r, is the

5
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Fieller interval (see IGLEHART [7]); the construction of this interval is

possible only because of the quadratic dependence of Z(t) on r.

In light of the above discussion, it seems reasonable to limit

ourselves to processes {Z(t) : t > 01 such that:

Z(t) does not depend on any unknown parameters. (2.7)

Because (2.7) is not mathematically precise, we shall need to describe this

assumption in more detail in the next section.

In any case, (2.4) and (2.7) form the core of the method of

standardized time series. In view of (2.5), we shall call procedures based

on (2.4) and (2.7) cancellation methods. If we adopt the convention that

Z cannot be deterministic, then cancellation methods and consistent

estimation procedures are disjoint families of techniques, and we arrive at

a decomposition of steady-state confidence interval methods which is

described by Figure 1.

3. STANDARDIZED IE SERIES

As indicated in the previous section, standardized time series is a

cancellation method; this point was made by SCHRUBEN in [101. Recall that

a is a measure of the variability of r(t)-r. Thus, if Z(t) is to be

proportional to a, it seems reasonable for Z(t) to look at the

fluctuations of r(t)-r as a function of time. This suggests that one

should base one's analysis on the process r(-)-r, as opposed to merely the

point estimate r(t)-r.

6
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Figure 1

In keeping with this viewpoint, it is natural to extend the CLT (2.2)

to a functional central limit theorem (FCLT). A FCLT provides a

distributional approximation for the entire process r(.)-r. To be more

precise, let

nt
Y n~t W f Y(s)ds, 0 < t < I

0

Given that Y possesses a steady-state (see (2.1)), it follows, upon

observing that Yn(t) - t r(nt), that

7



Y (t) rtn

as n +. To obtain some sense of the random fluctuations of Yn(t)

around rt, it is necessary to "scale up" the difference Y n(t) - rt. To

be consistent with the CLT (2.2), the scaling factor must clearly be

11/2

n1 2  So, consider the random function

X (t) E n 1/2C(in (t) - rt)
n n

for 0 < t < 1. A FCLT provides an approximation, in distribution, for the

process X - {X (t) : O( t 1.
n n

To determine the limit X of the sequence Xn, observe that the

continuity of X suggests that the limit X ought to be continuous in
n

t. Furthermore, consider the increments of X n

1/2.1 n(t+s)
X(t+s) - X (t) - n f Y(u)du - rs)

Snt
nt

X (t) - X (0) nL/2(_L f Y(u)du - rt) * (3.1)n nn

Note that X n(t) - X n(0) - X n(t-c) - X n(0) for e small and positive.

From (3.1), it follows that X n(t+s) - X n(t) depends only on the evolution

of Y after time nt, whereas X n(t-c) - X n(0) depends only on Y up to

time nt-ne. As n * =, one expects that events occurring ne time units

apart are asymptotically independent; consequently, the limit process X

should have independent increments, on the sense that for t1 < t2 <

tn, the random variables X(t2) - X(t1 ), ... , X(tn) - X(tnI) are

8A
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independent. (Extending our heuristic argument above from two increments

to n increments is easy.) Finally, if the process Y is time-

homogeneous, it makes sense (see (3.1)), that

X (t+s) - X nt) W X n(S) - X (0)nn n

C means "has approximately the same distribution as"). Passing to the

limit we therefore expect that X will have stationary increments, in the

sense that X(t+s) - X(t) _T X(s) - X(O). ( denotes equality in distribu-

tion.)

To summarize, we expect that the limit process X:

i) is continuous,

ii) has independent increments, and

iii) has stationary increments. (3.2)

It turns out that (3.2) uniquely characterizes the possible limit X;

namely, X must be a Brownian motion (see BREIMAN [21, Chapter 12, for

definitions and results). A Brownian motion process must necessarily be

Gaussian, which is consistent with the CLT (2.2).

We can now state our FCLT assumption on Y:

Xn(.) n aB(.) (3.3)

as n + , where B(e) is a standard Brownian motion (i.e., B(0) - 0,

var B(t) - t). Note that (3.3) refers to weak convergence of the random

function Xn(.) to the random function oB(.). Thus, our FCLT assumption

n

9



requires an understanding of the notion of weak convergence of random

functions, as opposed to the more standard notion of weak convergence of

random variables. We shall not go into further detail on this point,

except to mention that a brief discussion of the relevant convergence

issues is given in Section 2 of GLYNN and IGLEHART [5].

Of more practical importance is the need to have an understanding of

when a FCLT holds. As our heuristic argument indicates, one basically
needs a time-homogeneous process with an appropriate asymptotic

independence structure. To be more concrete, assume that Y is derived

from a stochastic sequence obeying a recursion of the form

Y n+l - h(n, Y , -nn+1) (3.4)

where nnl is independent of YO, Y1, ... Y, In order that Y be

time-homogeneous, it is necessary that the nn's be identically

distributed and that h(n,y,n) not depend explicitly on n.

From a simulation standpoint, the time-homogeneity requirement can be

stated as:

The state transition rules and clock-resetting rules should not

contain any explicit time-dependence.

Thus, a simulation which explicitly incorporates time trends is not

time-homogeneous.

The asymptotic independence assumption is easily understood, from an

intuitive standpoint: events in the distant past should not affect events

10
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in the distant future too much. Mathematically, this requirement is often

stated in terms of mixing conditions.

#-mixing: This is a very restrictive type of mixing condition, which

basically says that

jP(AIB) - P(A)l

should be uniformly small in both A and B, provided that A and B are

events separated by a long time period. (See p. 166-167 of BILLINGSLEY [1]

for a rigorous definition.)

Strong mixing: This is a less restrictive type of mixing condition,

stating that

IP(A fl B) - P(A)P(B)i

ought to be uniformly small in both A and B, provided that A and B

are events separated by a long time period. (See HALL and HEYDE 161 for a

definition.)

Typically, in order to obtain a FCLT, certain rate conditions are

imposed on the mixing coefficients; these conditions tend to be more

stringent for strong mixing processes than *-mixing processes.

It turns out that regenerative processes that are positive recurrent

(i.e., finite expected time between regenerations) are automatically strong

mixing. (See GLYNN [3] for a proof.) For a regenerative process to be

0-mixing, it is necessary that regenerations occur "uniformly fast"

11



throughout the state space. More precisely, if the regenerative

process is time-homogeneous Markov on a state space S, then we require

that there exist n > 1 such that

sup{P{T > njY 0 - x1 x c S} < 1 , (3.5)

where T is the first regeneration time for T. Note that (3.5)

disqualifies any birth-death type process from being 0-mixing, since the

hitting time of any fixed state cannot be uniformly bounded; in fact, the

hitting time of any fixed state tends to infinity as the initial state goes

to infinity. By similar reasoning, virtually any simulation of an open

queueing network (with an unlimited number of potential customers) will

give rise to a process which is not 0-mixing. (However, such processes

will frequently be strong mixing.)

In terms of mathematical conditions guaranteeing that Y satisfy the

FCLT (3.3), the reader is referred to Section 3 of [5]. It turns out that,

mathematically speaking, one "almost always" gets a FCLT whenever a CLT

holds, so that the FCLT assumption is only slightly stronger than the CLT

assumption. From a practical standpoint, we repeat that an FCLT holds

whenever one has time-homogeneity and asymptotic independence, asymptotic

independence usually being described by mixing hypotheses.

We now need to discuss how the FCLT (3.3) is used to obtain the

scaling process {Z(t) : t > 0). Let g be a real-valued function defined

on a function space, so that g(X) makes sense as a random variable.

Assume that:

i) g(ax) - ag(x) for all a > 0 and functions x (this

is the scaling property for Z(t)).

12
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ii) g(B) > 0 w.p.1 (this guarantees that Z(t) is

non-vanishing for t sufficiently large) (3.6)

iii) g(x + Pk) - g(x) for all P, where k(t) - t (x + Pk

is the function whose value at t is x(t) + Ok(t)).

This guarantees that g(X n) does not depend

implicitly on the unknown parameter r (see (2.7)).

In addition, we want g to be suitably continuous, but we shall not be

precise here about this. (See Section 3 of [5j for details.)

Let h(x) - x(1)/g(x). By the continuous mapping lemma (this is where

we need g to be suitably continuous), and (3.3)

h(X ) - h(aB) ,
n

as n + w• But h(oB) - aB(1)/g(oB) - aB(1)/qg(B) - B(1)/g(B), so that the

a has "cancelled out." On the other hand,

h(X n 1/2 iw -)nY(n(1)-)
h(X ) n

g( n/2 - kp))

g( n (-( () - ii

g(n )

So, assuming that Y satisfies an FCLT and g satisfies (3.6), the

interval

13
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Lr [Y (1)- z(1-a/2) g(Y ) , n(1) -z(a/2) g( (3.7)
n n n nl

is an asymptotic 100 (1-)% confidence interval for r, where H(z(a)) - a,

and H(-) - P(B(1)/g(B) < - (We implicitly assumed here that H was a

strictly increasing continuous distribution function, but this turns out to

be justified; see Section 3 of [5]).

The process (Yn - rk)/g(Yn) is called a standardized time series.

Letting -% be the set of g's satisfying (3.6), we find that each g C JR

gives rise to a standardized time series. Among possible choices for g

are:

i) batch means with the number of batches fixed as sample size

tends to infinity (in other words, there exists a choice of g

giving rise to batch means confidence intervals).

ii) Schruben's standardized sum process (see (101).

iii) Schruben's standardized maximum process (see [101).

For more detail on possible choices for g, see Section 4 of [5].

It should be noted that in order to incorporate the method of batch

means, with the number of batches increasing with the sample size, it is

necessary to consider Z(t)'s of the form gn(X ), where g c-.% One then
nn n

needs to examine weak convergence of Xn( )/gn(Xn); this type of weak

convergence problem tends to be much more complicated to analyze math-

ematically than the case in which gn(o) is independent of n.

Fortunately, with our definition of standardized time series, there is no

need to consider such convergence problems.

14
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To summarize the above discussion, we have shown that each g c

gives rise to a standardized time series confidence interval which is

asymptotically valid.

4. FURTHER PROPERTIES OF STANDARDIZED TINE SERIES

As indicated in Section 3, each standardized time series procedure

gives rise to asymptotically valid confidence intervals. We now wish to

discuss the desirability of these intervals. The discussion of

desirability will focus on two issues:

i) asymptotic mean of the confidence interval half-length.

ii) asymptotic variability of the confidence interval half-length.

Let L n(g) be the length of the confidence interval based on observing T

over the interval [O,n] and using a standardized time series based on

g c %. Clearly,

Ln(g) -(z(1-a/2) - z(a/2)) g(Y )
n

by (3.7). Noting that

g(Yn) - g(Yn - kr) n- 1/2 g(n 1/2W n - kr))

-1/2
= n g(Xn)

we see that

n1 2 Ln(g) - (z(l-a/2) - z(a/2)) og(B)

as n 4 c. Thus, L n(g) is of order n- /2 . As is clear from Section 2,

this is the same order convergence rate as that obtained for consistent

estimation procedures.

15



However, a more precise comparison can be made. Under appropriate

uniform integrability hypotheses (this should be viewed as a mild

additional mathematical assumption on Y), one can pass expectations

through (4.1):

n / 2 EL n(g) + (z(1-a/2) - z(a/2) • oEg(B) (4.2)

as n c. Clearly, one would like to select g E-1 so that the

right-hand side of (4.2) is as small as possible. It turns out that

inf{z(l-a/2) - z(a/2) Eg(B) : g c W) - 2z6 (4.3)

where z6 is the (1-6/2)% quantile of a N(O,1) r.v. (see Section 5 of

[5]). The right-hand side of (4.3) is the asymptotic confidence interval

length obtained via a consistent estimation technique. We therefore have

that:

Asymptotically, a standardized time series confidence interval is

at least as long, in expected value, as a confidence interval

obtained via consistent estimation.

In fact, it turns out that standardized time series confidence

intervals are strictly longer than consistent estimation intervals, because

the infinum in (4.3) is not attained within A.

What about asymptotic variability of L n(g)? Note that

var g(Y) n 1 var g(Xn)

so that

16



n var g(Yn + a var g(B)

as n (again, provided that appropriate uniform integrability for Y

is available). It turns out that if g c 5W, then g(B) can not be

deterministic (this justifies calling standardized time series a

cancellation procedure; see Section 2), so var g(B) > 0. Thus, the
n-1,

variance of Ln(g) is of order n

On the other hand, if consistent estimation is used, we claim that the

variance of Ln(g) is of smaller order than n- 1. The length of such a

confidence interval is given by

L n 2 z s(n)/ n ;

so
12var L 4 z8 var s(n)

n  n

But s(n) -4 a as n + -, so that (under appropriate uniform

integrability), var s(n) var a - 0, showing that var L is of smaller

order than n- . In fact, in [5] it is shown that for the regenerative
-2

method, var L is of order n 2 We conclude that:n

Asymptotically, a standardized time series confidence interval

is more variable than a confidence interval obtained via

consistent estimation.

It is of interest to return to a philosophical point discussed in Section

2. It was mentioned there that confidence intervals are but one way to

measure the variability of a point estimate. Another alternative is to
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just estimate the MSE of the point estimate, namely i? Clearly,

consistent estimation techniques give such an estimate, in addition to a

confidence interval for r.

However, it does not appear that standardized ti e series gives

consistent estimators for i? For observe that

1/2 g(Yn) -0 
1g(/)•

Since g(B) is non-deterministic if g c 3(, it follows that n1/ 2 g(Yn)

does not consistently estimate a.

5. SUNKA Y AND FUTURE WORK

Schruben's method of standardized time series for generating

steady-state confidence intervals has provided a totally new approach for

attacking one of the hardest problems in output analysis. It appears to

behave well empirically, and seems to be a robust procedure. However, it

suffers two defects from a mathematical viewpoint: longer confidence

intervals, on average, and more variable confidence intervals, than

consistent estimation methods. On the other hand, these results pertain

only to large-sample asymptotics, and therefore it is possible that

standardized time series procedures may strictly dominate consistent

estimation methods in a small-sample context.

As for future work to be done in the area, the following problems seem

interesting:

1. Mathematical analysis of small-sample theory for standardized time

series (this would involve obtaining Berry-Esseen type results for

FCLT's and would be hard).

18



FILMED
I1-66

DTIC


